Impaired Motor Preparation Under Conditions of Response Uncertainty in Parkinson’s disease

E.M.Dressler1,2, A. Aravindakshan3, J. Ross1,2, K. Sigvardt1,2,4, L. Zhang4, N. Malhado-Chang4, E.A. Disbrow1,5

1. VA Northern California Health Care System, Martinez CA; 2. Center for Neuroscience, UC Davis, Davis CA; 3. Graduate School of Management, UC Davis; 4. Department of Neurology, UC Davis; 5. Department of Neurology, LSU Shreveport Health Sciences Center

BACKGROUND

• People with early-stage Parkinson’s disease (PD) tend to have executive function problems, whereas later-stage patients have a broader range of cognitive deficits.
• However, cognitive impairment is not consistent across patients.
• To assay executive function, we measured stimulus response uncertainty, a state in which the responder cannot predict which of two or more responses associated with a particular stimulus will be required.
• Stimulus response uncertainty has been shown to exert a cost on performance in normal subjects, with increased response latency and decreased accuracy that rises as a logarithmic function of the degree of uncertainty.

Hypothesis:
PD results in increased cost of response uncertainty.

METHODS (continued)

• Uncertainty Task

Figure 2. Examples of the 3 trial types
1) Control trials consist of a matching cue (white circle) and target (green circle).
2) Switch trials consist of mismatched cue and target.
3) Uncertainty trials consist of two or more cues and a single target. Note that, while the cues were manipulated across trials, motor output was matched. This design allows us to isolate the motor planning aspects of the task.

RESULTS (continued)

• Demographic data was similar across groups (Table 2).

Table 2. Demographic and Descriptive Data

<table>
<thead>
<tr>
<th>Group</th>
<th>AGE (M(SD))</th>
<th>EDU (M(SD))</th>
<th>MMSE (M(SD))</th>
<th>NAART (M(SD))</th>
<th>REA (M(SD))</th>
<th>PD (M(SD))</th>
<th>TEA Time/Switch (M(SD))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impaired PD</td>
<td>60(5.5)</td>
<td>16(7.3)</td>
<td>29(3.7)</td>
<td>113(6.9)</td>
<td>6.3(1.6)</td>
<td>16.4(1.1)</td>
<td>21.7(4.8)</td>
</tr>
<tr>
<td>Unimpaired PD</td>
<td>62(8.4)</td>
<td>16(7.6)</td>
<td>29(1.7)</td>
<td>118(3.4)</td>
<td>4.6(1.0)</td>
<td>18.0(4.0)</td>
<td>16.5(2.8)</td>
</tr>
<tr>
<td>Control</td>
<td>64(5.8)</td>
<td>17(2.3)</td>
<td>29(3.1)</td>
<td>116(7.2)</td>
<td>4.0(1.3)</td>
<td>18.4(4.7)</td>
<td>16.9(4.7)</td>
</tr>
</tbody>
</table>

• There were significant differences in reaction time for two and three cue trials compared to control (one cue) trials.
• We found significant differences in reaction time between all three subject groups (CO, unimpaired PD, impaired PD) for all trial types (control, two digit cue, three digit cue, four digit cue; Fig. 2).

Figure 2. Reaction Time data

Figure 3. Error data

RESULTS (continued)

• There were also significant differences in error rate between the impaired PD group and both the control and unimpaired PD groups for four digit cue trials (Fig. 3).

Table 1. Parkinson’s Disease Severity

<table>
<thead>
<tr>
<th>Group</th>
<th>DA (M(SD))</th>
<th>DISEASE DURATION (years) (M(SD))</th>
<th>AGE OF ONSET (M(SD))</th>
<th>UPDRS (M(SD))</th>
<th>H & T (M(SD))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impaired PD</td>
<td>505.2(101.2)</td>
<td>74(6.0)</td>
<td>69(6.0)</td>
<td>122(13.5)</td>
<td>13(1.6)</td>
</tr>
<tr>
<td>Unimpaired PD</td>
<td>245.8(118.9)</td>
<td>4.8(2.6)</td>
<td>58.5(5.5)</td>
<td>99.6(38.3)</td>
<td>15.0(7.5)</td>
</tr>
</tbody>
</table>

• Impaired PD group significantly different from Control group p<0.05
• Impaired PD group significantly different from Control and unimpaired PD group p<0.05

• We also found a significant difference in error rate between the impaired PD group and both the control and unimpaired PD groups for four digit cue trials (Fig. 3).

CONCLUSIONS

• Parkinson’s disease can result in increased uncertainty costs
• Performance was correlated with neuropsychological measures of switching
• Response uncertainty performance may provide a robust indicator of executive dysfunction in PD
• Funding provided by the Department of Veterans Affairs Office of Research and Development, Rehabilitation R&D Service (110100001841)