Improving Cognitive Functioning and Quality of Life Through Dance for PD: A Pilot Intervention Trial

Maria I. Ventura1,2, Jessica M. Ross3, Kimberly E. Lanni4, Karen A. Sigvardt5, Elizabeth A. Disbrow6
1Dept. of Geriatrics, UCSF, 2Dept. of Psychology, UC Davis, 3Dept. Of Cognitive Science, UC Merced, 4Dept. of Psychology, William Jessup University, 5Dept. of Neurology, UC Davis, 6Dept. of Neurology, LSU

BACKGROUND
- Parkinson’s disease (PD) can result in motor and non-motor symptoms, including cognitive and emotional impairments1.
- Current exercise rehabilitation interventions primarily target motor symptoms of PD while ignoring cognitive and emotional deficits that may also contribute to decreased quality of life2.
- Our goal was to systematically evaluate the effects of dance on motor, cognitive and emotional functioning in people with PD. We also wanted to explore how dance can impact quality of life.

METHODS

Motor measures:
1) Timed Up and Go
2) Timed Gait Speed
3) Standing Balance

Cognitive measures:
4) Alternate Uses
5) Action Fluency
6) Digit Span
7) Test of Everyday Attention (TEA)

Emotional & Quality of Life:
8) Geriatric Depression Scale (GDS)
9) Falls Efficacy Scale-International (FES-I)
10) Parkinson’s Disease Questionnaire – 39 (PDQ-39)
11) PDQ-39 Activities of Daily Living (ADL)

Other measures:
12) Hoehn & Yahr (H&Y)
13) Mini-Mental State Exam (MMSE)
14) Full-scale IQ (FSIQ)

RESULTS

- Dance may simultaneously improve motor, Parkinson function in people with PD. We also wanted to explore how dance can impact quality of life.
- Larger, randomized controlled trials are warranted to assess the impact of dance on motor, cognitive and emotional functioning in people with PD.

DISCUSSION

- Repeated measures analysis of variance revealed significantly improved gait speed (Fig. 1) and cognitive switching (Fig. 2), reduced fear of falling (Fig. 3), increased satisfaction in activities of daily living (Fig. 4) and overall improved quality of life (Fig. 5) in participants who completed the 10 week dance intervention compared to controls.
- Dance may simultaneously improve motor, cognitive and emotional functioning and improve quality of life in people with PD (Fig. 6).
- We calculated clinically meaningful effect sizes between groups (≥0.20) for almost all measures of motor, cognitive and emotional functioning.
- Larger, randomized controlled trials are warranted in order to rigorously evaluate the multi-modal benefits of dance for people with PD.

ACKNOWLEDGMENTS

The authors would like to thank our research participants, the Mondavi Center especially Ruth Rosenberg, Pamela Trokanski, David Leventhal and the Mark Morris Dance Group for their support of this project, Dr. Vicki Wheelock, Dr. Lin Zhang and Dr. Norka Mahado-Chang for their assistance with recruitment of PD participants.

Funding sources: RO1 NS064040 to EAD; the SfN Neuroscience Scholars Program, UC Office of the President Dissertation Award and NIH grant 5-T32-AG000212 to MIV.

REFERENCES

Dance for PD three-part class structure:
1: Seated warm-up
2: Standing supported movement
3: Movement across the floor

Fig. 1. Timed Gait Speed

Fig. 2. Cognitive Switching

Measure	Effect Size Between Groups
TUG | 0.23
Gait Speed | 0.90
Balance: affected leg | 0.41
Balance: non-affected leg | 0.37
Alternate Uses | 0.59
Action Fluency | 0.38
Digit Span Forward | 0.50
Digit Span Backward | 0.12

Fig. 3. Falls Efficacy Scale

Fig. 4. PDQ-39 Activities of Daily Living

Fig. 5. PDQ-39 Quality of Life

Fig. 6. Cognitive Functioning

Table:

<table>
<thead>
<tr>
<th>Measure</th>
<th>N(=8)</th>
<th>N(=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUG</td>
<td>71.8 (3.6)</td>
<td>71.8 (3.6)</td>
</tr>
<tr>
<td>Gait Speed</td>
<td>70.4 (4.5)</td>
<td>70.4 (4.5)</td>
</tr>
<tr>
<td>Balance: affected leg</td>
<td>6.1 (3.1)</td>
<td>6.1 (3.1)</td>
</tr>
<tr>
<td>Balance: non-affected leg</td>
<td>4.3 (2.6)</td>
<td>4.3 (2.6)</td>
</tr>
<tr>
<td>Alternate Uses</td>
<td>29 (28-30)</td>
<td>29 (28-30)</td>
</tr>
<tr>
<td>Action Fluency</td>
<td>116.7 (6.1)</td>
<td>116.7 (6.1)</td>
</tr>
<tr>
<td>Digit Span Forward</td>
<td>112.8 (7.5)</td>
<td>112.8 (7.5)</td>
</tr>
<tr>
<td>Digit Span Backward</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>TEA</td>
<td>0.53</td>
<td>0.53</td>
</tr>
<tr>
<td>GDS</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>FSIQ</td>
<td>0.71</td>
<td>0.71</td>
</tr>
<tr>
<td>PDQ-39</td>
<td>0.68</td>
<td>0.68</td>
</tr>
<tr>
<td>PDQ-39 ADL</td>
<td>0.52</td>
<td>0.52</td>
</tr>
</tbody>
</table>

TABLES

Table 1: Demographic Information

<table>
<thead>
<tr>
<th>Group</th>
<th>Intervention</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (SD)</td>
<td>71.8 (3.6)</td>
<td>71.8 (3.6)</td>
</tr>
<tr>
<td>Sex</td>
<td>BF</td>
<td>SF, MF</td>
</tr>
<tr>
<td>Years of Education</td>
<td>16.9 (3.5)</td>
<td>17.8 (1.1)</td>
</tr>
<tr>
<td>H&Y (range)</td>
<td>1-2.5</td>
<td>1-2</td>
</tr>
<tr>
<td>Time Since Diagnosis (years)</td>
<td>6.1 (3.1)</td>
<td>4.3 (2.6)</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

The authors would like to thank our research participants, the Mondavi Center especially Ruth Rosenberg, Pamela Trokanski, David Leventhal and the Mark Morris Dance Group for their support of this project, Dr. Vicki Wheelock, Dr. Lin Zhang and Dr. Norka Mahado-Chang for their assistance with recruitment of PD participants.

Funding sources: RO1 NS064040 to EAD; the SfN Neuroscience Scholars Program, UC Office of the President Dissertation Award and NIH grant 5-T32-AG000212 to MIV.

REFERENCES